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1. Introduction. The approximation of a zero of a polynomial P by an iterative 
method generally consists of two parts: Obtain a "good" approximation to the zero 
of interest and then iterate to a solution. Furthermore the classical iteration func- 
tions possess a property which may be illustrated by the Newton-Raphson itera- 
tion function, 0 = t - P/P'. This function is not defined at infinity or at the zeros 
of F'. 

We introduce a class of new iteration functions which are ratios of polynomials 
of the same degree and hence defined at infinity. The poles of these rational func- 
tions occur at points which cause no difficulty. 

The classical iteration functions are given as explicit functions of P and its 
derivatives. The new iteration functions are constructed according to a certain 
algorithm. This construction requires only simple polynomial manipulation which 
may be performed on a computer. 

We shall treat here only the important case that the zeros of P are distinct and 
that the dominant zero is real. The extension to multiple zeros, dominant complex 
zeros, and subdominant zeros will be given in another paper. We shall restrict our- 
selves to questions relevant to the calculation of zeros. Certain aspects of our in- 
vestigations which are of broader interest will be reported elsewhere. 

2. Brief Survey of Results. The G polynomials are defined as the remainder of 
a division process. Their importance in our work is due to the property exhibited 
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in (3.4). A simple recursion for their calculation is given by (3.7). The coefficients of 
the G polynomials are also of interest. Two of their important properties are given 
by (3.17) and (3.18). 

The generalized G polynomials are introduced in Section 4. They are most con- 
veniently generated using (4.7) and (4.8). A determinantal formula is given by 
(4.19). The G polynomials and the generalized G polynomials are used to form itera- 
tion functions in Section 5. Some insight into these new iteration functions may be 
obtained from the discussion at the end of the section. The order and asymptotic 
error constant are given in Section 6. 

The main result of this paper is the theorem of Section 7 which essentially states 
that the sequence of approximants is guaranteed to converge. A bound on the error 
after i iterations is developed at the end of this section. Theorems concerning the 
monotonicity of the convergence are given in Section 8. 

A method of normalized calculation which is important for numerical applica- 
tion is described in Section 9. Algorithms for the accelerated calculation of the 
G polynomials are described in Section 10. The iteration functions yield globally 
convergent approximation sequences only if a certain parameter is chosen suffi- 
ciently large. Then the iteration function cannot be prescribed as an explicit func- 
tion of P and its derivatives. For small values of this parameter the iteration func- 
tion can be explicitly given and this leads to an interesting set of iteration functions 
which are given in Section 11. 

In Section 12 we show that many classical methods (nonglobal) may be obtained 
as special cases of our formulation. A brief survey of the literature ends this section. 

Appendix A contains a very brief discussion of computer implementation and 
gives a number of numerical examples. Important formulas are summarized in 
Appendix B while notation is summarized in Appendix C. 

3. The G Polynomials. Let 
n 

(3.1) P(t) a_jtj ao 1. 
j=0 

We assume that P(t) has real coefficients but this is not essential. Let P have dis- 
tinctzeros p1,P2, , Pn ,with] pi j > pjIj = 2,3, ... ,n.Thusthedominant 
zero is real. 

Let B(t) be any polynomial of degree m < n such that B(pi) - 0. Let X be a 
non-negative integer and define polynomials G(X, t, B) and Q(X, t, B) as the re- 
mainder and quotient of the division of B(t)tx by P(t). Thus 

(3.2) B(t)tx = G(X, t, B) + P(t)Q(X, t, B). 

For many purposes we need not indicate the dependence of G and Q on B and we 
write G(X, t) and Q(X, t). Clearly G(X, t) and Q(X, t) are of degrees n - 1 and 
mn + X - n respectively, with Q(X, t) 0_ if m + X - n < 0. The G polynomials 
play a basic role in our work; the Q polynomials play only an auxiliary role. 

From (3.2), 

G(X, pi) = B(pi)pie, i = 1, 2, ... , n. 
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By Lagrange's interpolation formula, 
n 

(3.3) G(X, t) = jB(pi)piXLi(t), 
i~1 

where 

Li(t) P(t) 1 
t - pi ~i 

Hence 

G(Xt) _ B(pi)px 
P(t) i=1 P'(pi) (t - pi) 

Let fl(X) be the weighted power sum 

(3.5) 3(X) E B(pi) Px 

Let E be the displacement operator 

Eh(X) = h(X + 1). 
Then from (3.4) 

(3.6) (t - E)G(X, t) = f(X)P(t). 

Clearly ,8(X) is just the leading coefficient of G(X, t) which we label ao(X). Since 
G(0, t, B) = B(t), we have the recursion 

(3.7) G(0, t, B) = B(t), G(X + 1, t, B) = tG(X, t, B) - ao(X)P(t). 

This provides a simple recursion for forming the G(X, t) on a machine or by hand. 
It is clear that 

(3.8) P(E)G(X, t) = 0. 

Forming G(X, t) by the recursion (3.7) is far simpler than using the recursion (3.8). 
In hand calculation, the G(X, t) may be computed by a method of detached co- 
efficients using a movable strip of paper on which the coefficients of -P have been 
written. A method for calculating G(2X, t) directly from G(X, t), G(x + 1, t), * 
G(X + n - 1, t) is described in Section 10. 

We obtain a number of additional properties of the G(X, t). From (3.3), 
n-1 

(3.9) G(X, t, B) = a ai(X)tn-1-j, 

where 

(3.10) aj (X) _ B(pi) Pix Aj(pi). 
'(1pi) 

P 

(We should write a3(X, B) but will not do so in order to simplify notation.) The 
Aj(t) are the "associated polynomials" of P (Traub (28]) given by 

(3.11) Aj(t) = I ajrtr. 
r=O 
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We may also write 

(3.12) aj(X) -Aj(E)f(X). 

The expansion of the G polynomials in terms of the associated polynomials of P is 
given by 

n-1 

(3.13) G(X, t) = Z (X + j)An-lvj( t) 
j==o 

In terms of the coefficients ai(X), the recursion on G(X, t) becomes 

(3.14) aj(X + 1) = aj+(X) - aO(X)aj+l, j = 0, 1, n -1 an() = 0. 

We note two important properties of the aj(X) for the case B = 1. 
Consider the homogeneous linear difference equation 

(3.15) P(E)y(X) O0 

with initial conditions 

(3.16) E'y(O) -yA , , . 0, ,n1-1. 

Then (Traub [26], [27]), 
n-1 

(3.17) y(X) =E Yn-1-jai(x) 
j=o 

That is, the a,(X) are the weights of the starting conditions in the general solution. 
Also, 

n-1 

(3.18) Pi= japi"-cj(X), i = 1, 2, * n. 
j=0 

Hence the aj(X), which may be expressed as polynomials in the coefficients of P, 
are the coefficients in the formula for an arbitrary power of a zero of P in terms of 
the first n - 1 powers. 

Let h(t) denote the polynomial h(t) divided by its leading coefficient. Thus 
G(X, t) = G(X, t)/,8(X) and from (3.3) and (3.5), 

(3.19) lim G(X, t) __P(t) ,,,*0 t - Pi 
From (3.10), 

(3.20) lima3(X + 1) j=0,1, n ,n 
)X-*0 aj(X) 

Assume that A j(p) # 0. Then 

(3.21) lin a+I(X) _ Aj+,(p1) = p + a j-0,1,0 , 7-2. 
7sx-, arj(X) A j(pi) A j(pi) 

4. The Generalized G Polynomials. Let 

(4.1 ) (, t)= (p 1 PP(t) (t) 
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The symbols G1 and G are used interchangeably. Then 

Gp(X, t) cip 

PP(t) i=1 (t - POP 
with 

(4.3) ci B (p,) 
P'(pi) 

Hence 
n 

(4.4) Gp(X, t) = B( pi)[P'( p)]P-pLiP(t) 
i=i 

and 

(4.5) Gp(X, pi) = B(pi)[P(p)Ppi i = 1, 2, n. 

Differentiation of (4.1) yields 

(4.6) Gp+1(X, t) = P'(t)Gp(x, t) P(t) GP'(x, t), I p = 1, 2, 

By Leibniz's rule, 

G4(7, t) = Z [- P(t)]P (pk a- (X, t V (t) 

Vk(t) - 
( 

_I)Pk+(t) I](k) 

The Vk( t) may be calculated recursively by 

(4.8) Vk(t) = P'(t)Vk-l(t) - P 
Vk-1(t), V0(t) k 

The Vk(t) may also be written in terms of Bell polynomials (Traub [25]) as 

(4.9) Vk(t) = k I !(_p)k& Ukl [PI, . ,p(kl+)] 

where the Uk,l, the coefficients of the kth Bell polynomial, are defined by 
k 

Bk(W; 91, * g *k) =E U-k, (91, * g *k-1+1)WI 
1=0O 

Since 

(4.10) l' k(t) Gk+1(0, t, 1), 

we may write 

(4.11) G (X, t, B) = 
p 

[-p(t)]P IGk (pl- k)(X, t, B) Gk+l(0, t 1,), 
k=O 

~~(p -i-k)! 
and, in l)articular, 

p-1 B(p-1-k)W 
(4.12) Gp(O, t, B) =E F- P(o )]pkGk+l( t 1) 

k=0 
(p - k)! G~(,t ) 
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Equations (4.7) and (4.8) give a very practical method for calculating 
Gp(X, t, B) on a computing machine. Generalization of the G,(X, t) to the case of X 
and p negative will be discussed in a later paper. 

We develop a number of relations involving the G,(X, t). From (4.2), 

(4.13) (t - E)Gp(X, t) = Gp1(X, t)P(t) 

or 

(4.14) GV(X + 1, t) = tGV(x, t) - GV1(X, t)P(t). 

Since Go(X, t) = #(X) = ao(X), this generalizes (3.7) and is valid for p = 1, 2, 
From (4.13), 

(4.15) (t - E)PGp(X, t) = 3(X)PP(t) 

or 
P 

(4.16) E (- 1)jC(pj)Gp(X + j, t)tp-j = f(X)PP(t), j=0 

where C(pj ) = p!/[(p - j) !j!]. Also, 
j-l 

(4.17) (tj - Ej)Gp(X, t) = P(t)Z:ti-l-kEkGPi(X t) 
k=O 

or 
j-l 

(4.18) G6(X + j, t) = tjGp(x, t) - P(t) : ti--kGp_1(X + k, t). 
k=O 

One may easily show that Gp(X, t) satisfies the determinantal formula, 

G(Xt) P 0 ... 0 

G'(Xt) P' P ... 0 

(4.19) GP(XI 0 = G(p-2) (X I p(p-2) p(p-3). 

(p-2)! (p-2)! (p-3)! 

G(P-D (X It) P(P-D p~p- ..2) 

(p- )! (p-1)! (p-2)! 
Expanding this determinant in elements of the last row shows that 

GP(,t) = P'GP-1 (Xt - 2 PGp-2(t)t) 

(4.20) 
+ ... + (-1) P(_) P 2G( ) ? ( 1 ) P P () 

Expansion of the determinant in terms of the first column must yield (4.7). 
We derive a number of limit relations for Gp(X, t). From (4.2), it follows that 

Gh (XI 0 - G(X, t) 13(X 
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and 

lin G((, 0 - (OPjN )P 
X->0 t - PI 

Hence 

(4.21) limn GI(, t) = P(t) 
X-->0 Gp-,i(X, t) t - PI 

Furthermore 

(4.22) lim GQ(x, t) = P(t) 
p-*OO Gp,1(X, t) t - PI 

provided I t- pi < I t-p; 1, j = 2, 3, * ,n. 

5. The Formation of Iteration Functions. For X and p fixed, define 

(5.1) (sP(X2 t2 B) = Gp(X + 1, t, B) 

We will often not indicate the dependence of p on B explicitly. (p,(X, t) will be used 
as an iteration function. That is, we define a sequence by 

ti+i = fPPN ti)) i = O. 1 

From (4.14) it follows that 

(5.2) OpN 0 = t - P(t) GP-(, t) 
Gv(X, t) 

This exhibits pp(X, t) in "canonical form" for an iteration function. It permits the 
calculation of each member of the sequence as a small correction to the preceding 
member. In particular, 

(5.3) 0(x, t) = t - P(t) ao(X) 
G(X, t)' 

(5.4) 2(X, t) = t - Pt) G(X, t) 
P'(t)G(X, t) - P(t)G'(X, t) 

For purposes of comparison (but not for calculation) this may be written as 

(55) 02(, t) = t- 1-u(t) I u(t)W(X, t) 

where 

U(t) = P(t) W(x t) - G'(x't) 

This iteration function may be compared to the Newton-Raphson iteration func- 
tion p(t) t - u(t). One may also write 

(5) u-(t) - - u(t)W(X, t) 
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This exhibits 02(X, t) as the Newton-Raphson function plus terms of order u2( t). 
Similarly the third order iteration function, which is given in Appendix B, may be 
viewed as a generalization of Halley's function (Traub [24, p. 91]), 

(0 =t - UW At) P" (t ) 
~(t) = - 1 - A2(t)u(t) 'tA2(t) = 2 ) 

We obtain insight into the new iteration functions by observing that if Q1(t) = 

P(t)/(t - p1), then 

QP(t) 

Qi(t) is not known but we approximate it as well as we can. Let 

~(t) =-t P(t) 
11(t) 

be a general iteration function. In the Newton-Raphson iteration function we take 
H1(t) = P'(t) and hence 

H(pi) = Qi(pi). 

That is, H(t) and Qj(t) are equal only at the zero. On the other hand if we choose 

H(t) = H(X, t) - Ga( t) ' 
GI,-,(XI t)' 

then 
lim H(X, t) = Q1(t) 
X---oo 

for all t. Hence for X sufficiently large, H(t) approximates Qi(t) for all t. 

6. The Order and Asymptotic Error Constant. We study the convergence of the 
iteration in the neighborhood of P1. Convergence in the large is studied in Sections 
7 and 8. 

If there exist real numbers r and Cr(X, B) such that 

(6.1) linm (PP(X t, B) - P1 = Cr (X, B), 
t-p (t -p)r 

then r is called the order and Cr(X, B) is called the asymptotic error constant of 
Pp(X, t) (Traub [24, p. 9]). From (4.2) and (5.1) it follows that 

n 
Ecipl'+11(t -pi)p 

p t) = i=1 

Z cipi/(t -Pi) 
i=l 

Hence 

E dipi(Pi-P1) (t - P1 
(6.2) , 1) -pP = ; E t p 

i=2 t pi 
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where 

(6.3) di =- pi =-, i = 2, 3, ,n. 
C, pi 

(Since B(p1) # 0, ci 0.) Hence 

(6.4) ur p(X, t) - p1 _ - d 
t--Ip1 (t - 

PO)P i=2 (PI - p~- 

Thus the order of pp(X, t) is p and the asymptotic error constant C,(X) is given by 
the right side of (6.4). In particular, 

n X 

(6.5) C (X, F') = - 
At 

( 

(6.6) Cp(x 1) = - P'(p) /)l 
i=~2 f)(pi) (pi - iP 

Observe that 
lim Cp(X) = 0. 
X-->00 

If we assume that P1 I > P21 > I pj 17ij= 3, 4, . . . ,n, then 

(6.7) liM = -_ 
d, 

X-->o AX P - P2) PI 

We consider some special cases. It is easy to show that P2(0, t, 1) is the Newton- 
Raphson function. We have 

(6.8) C2(0, 1) = - E P'(p1) 1 
i=2 P'(pa) Pi - p 

One may show that the right side of (6.8) is identical with P" (pi)/[2P'(p1)], which 
is the standard result. If n = 2, then 

C ,P') - (P2/P) 

C1 x 1) (P2/P-)' 
P(t) p'(p )]p-l- 

In particular, 

C2(X, 1) = P'(p1) 
- 

while the corresponding result for Newton-Raphson is just 1/P'(pi). Hence for 
this special case, C has been decreased precisely by (P2/P1)"' 

7. Proof of Global Convergence. We shall prove the following 
THEOREM. Let the zeros pi of the polynomial P be distinct with I p I > I, i = 

2, 3, , n. Let to be an arbitrary point in the extended complex plane such that 
to i7 P2 , P3 , ... * p and let till = Pp (X, ti). Then for all sufficiently large but fixed X 
the sequence t, is defined for all i and t -- P1 
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Remark. Since P1 is real, one would in practice take to real. 
Remark. Since p(X, pj) = p, j 1, 2, * * , n, we have an 
ALTERNATIVE FORMULATION. Let the zeros pi of the polynomial P be distinct with 

i I >I pi , i | 2, 3, ... , n. Let ti+i = pp (X, ti). Then for all sufficiently large but 
fixed X the sequence ti is defined for all i and tj -* pj for some j. 

Before proving the theorem we prove a number of simple lemmas. It is con- 
venient to introduce the following notation. Let K be a circle of radius R centered 
at pi so that no other zeros of P lie within or on K and let 

S = It I I t - P1 I < Ri. 

We have 
LEMMA 1. For all sufficiently large X, sp,(X, oo) E S. 
Proof. From (6.2), 

n 

>2 di(pi -pl) 
(PX _0 

i=2 

1 + E di>2 
i=2 

One can clearly choose X so large that I qp,(X, oo) - pi < R. 
LEMMA 2. Let to 5 ??, P2 , P3 X * Pn . For all sufficiently large X, G,(X, to) # 0. 
Proof. From (4.2), 

Gp(X), to) cipix(Qi(to))P[1 + e(X, to)], 

where Q1(t) = P(t)/(t - P1) and where e(X, to) is defined for any to 5 p2, P. * 

and 
lim e(X, to) = 0. 

Hence the expression in brackets does not vanish for X sufficiently large. Since 
Q,(to) does not vanish, Gp(X, to) does not vanish for sufficiently large finite X. 

LEMMA 3. Let to $ oo. For all sufficiently large X, cpp(X) to) E S. 
Proof. 

n to piP >2 
dqijix(pi - P1) P1 

(I, to) - pi = i 2 to Pi 

1 + E d,,u iH 
i=2 \to - pi 

One can clearly choose X so large that 

1 spp(Xj to)- pi I < R. 

LEMMA 4. For all sufficiently large X, Gp(X, t) # 0 for any t E S. 
Proof. Consider any t E S. Then 

Gp(X, t) = cipiXQlp(t)[1 + e(X, t)], 

where Qi(t) = P(t)/(t - Pi) and where e(X, t) is defined for all t E S 
and limix_-e(X, t) = 0. Hence the expression in brackets does not vanish for X 
sufficiently large. Since Qj(t) does not vanish for t C S, G,(X, t) - 0 for sufficiently 
large finite X. 
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LEMMA 5. For all sufficiently large X and for all t E 8, 

(7.1) I sp&X(At) -piI < LIt - pi 12 L < 1. 

Proof. Since sp,(X, P1) = PiX the result is true for t = P1 . Assume t 5 pi. Then 

Vp(X, t) - P1 Gv(X + 1, t) - P1 Gv(X, t) 
t -Pi (t - p)Gv(XI t) 

n dpi ( - P1) 

= ( t - 
p ) P-1 i=2 (t - pO)P 

1+t pdi) (t -_nP1 
i=2 \t- pi 

Orderthe piso that IP21 > I Pi1,i = 3,4, ,n. Hence IA2j > ? Ai .LetD = 

2 |di . Since t lies inside the circle K while P2 X P3 X * Pn lie outside 
K, t - pi lp > M-1, i = 2, 3, * * , n for some number M. Recalling that for all 
t E S, I t - Pi < R, we conclude 

|(pp( t - P1i < 2 | pi I DRPlMI | 2I 

t-Pi - 1-RPDM, 1.2 l 

For all sufficiently large X the right side of this inequality may be made as small 
as desired. The uniform bound specified in (7.1) therefore holds for all t in S. 

Proof of Theorem. If to = oo apply Lemma 1. Hence it is sufficient to consider 
the case where to is finite. From Lemmas 2 and 3 we may choose X so large that 
SOP(X, to) is defined and (p,(X, to) E S. By Lemmas 4 and 5 we chooseX so large that 
Vp(X, t) is defined for all t E S and if t C S, (p(X, t) C S. Hence the sequence ti is 
defined for all i and since I ti+i - pi L I tj - P1 1, L < 1, we conclude that 
ti -> P1. 

In Section 6 we examined the asymptotic behavior of the error. We now obtain 
bounds on the error I t - p1 for all i. We use the same notation as in the proof of 
the preceding theorem. By Lemmas 1 and 3 we may assume that X is sufficiently 
large so that ti E S for all i > 0. Hence 

t - iP -< K1, i = 1,2, *2 

where 

K _ 2 pi 1 DM I A2 

1 - DMRP I2 
K 

Hence, 

ti+i - P1 _ Ki(pi-(p-Rp 

for p > 2. 
Let pk be the closest zero to P1. We do not assume that Pk is unique. Choose 

R = pk - pi l. Then for all t C S, and for j = 2, 3, nr, I t- p I > R. Hence 
we may choose 

(7.2) M-' = Rp. 
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We may assume that X is sufficiently large so that 

DAMRP I 21 < 2 

or using (7.2), D A ,2 I 2 4. If B = F', D = n- 1 and the requirement is simply 
that (n - 1)A2" < 2. Then 

-t+1-Pi < K(P1-1)(P-1)RPX K = PDill D 1 2 

Hence 

(7.3) It - pil < R [ R pl I D 12 X]QPi)/(P , for p 2, 

(7.4) ti+1-pi < R[IP1I~I/12I] for p= 1 

If B = P', we get the very simple bounds, 

1 ~ ~~~ 2(n - 1) P11I P2/P1 IX1(P i-1) (P 1) 
(7.5) it+i - pi 24 - Pkn - pi - P /P J 

for p 2, 

(7.6) Iti+1 - PI <- 
1 

Pk- P_ I [2(n- 1) I P |P2/P1 | ] for p 1 
L Pk -P 

8. The Character of the Convergence. We investigate the conditions under 
which the sequence of approximants converges monotonically or alternatingly. 
Throughout this section we strengthen our standard hypothesis. 

|P1I > P2I? Pij, j = 3, 4, **, 

to 

|P1| > P21 > Pi j = 3,4,... ,n. 

We assume that to, the initial approximant, is real and not equal to one of the 
subdominant zeros. 

By Lemmas 1 and 3 of Section 7 we may choose X so large that t1 lies in an open 
disk S centered at P1 which contains no other zeros of P. By Lemma 5 of Section 7 
we may choose X so large that for all t E S, 

I p(x, t) - P' 1 < L < 1. 

Since 

(p(, t) -t = p(x, t) - pi + p - = -(t - pi) -1 t-Px ] ' 

we conclude that, for X sufficiently large and all t E S, 

(8.1) Sgn [sp,(X, t) -t] = -Sgn (t - P1). 

Hence 

if ti > P1, then tj+j < ti 
(8.2) 

if t, < P', then tji+ > ti 
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From (6.2) it follows that for X sufficiently large 

Sgn [Fop(X, t) -Pi] Sgn [d2 (2) (P2-P1) (t Piy], 

(8.3) 
~~~~dZ 

B(P2) P 
(Pl) 

B(p2) P'(P2) 

From (8.2) and (8.3) we can determine the character of the convergence by im- 
posing conditions on the signs of P1 and p2 or on the evenness or oddness of p and X. 
Rather than pursuing all possible cases we content ourselves with the statement of 
two typical results. The importance of these results is that the type of convergence may 
be chosen at pleasure. 

First we assume p1 > 0, P2 > 0. This is not a serious restriction for we need 
only calculate a bound on the magnitude of the real zeros by, say, Lagrange's 
method (Dickson [71, p. 24) and introduce a change of variables that ensures that 
all real zeros are positive. Using (8.2) and (8.3) it is easy to prove 

THEOREM. Let pi > 0, P2> 0, B(t) = P'(t). Let X be sufficiently large. Then if p 
is even, tj t p ; if p is odd, tj converges alternatingly to P1 . 

We turn to an example of a theorem where conditions are imposed on p and X. 
We have 

THEOREM. Choose p and X even and let X be sufficiently large. Let B(t) = P'(t). 
Then if p - P2 > 0, ti T P1; if P- P2 < 0, ti I pi . Let B(t) = 1. Then if P1 - 

P2 > 0, ti I pI ; if P1 - P2 < 0, ti 1 P1. 
It is also a simple matter to determine the sign of the asymptotic error constant. 

It follows from (6.4) that for X sufficiently large, 

(8.4) Sgn C(X) = -Sgn Fd2(P2/Pl)x 1 
(P1 - P2)"'J 

Again we have two types of results. For example, if P1> 0, P2 > 0, we have 

C(X), P') < 0, CP(X, 1) > 0. 

If X is even and p is odd, we have 

Cp(X, F') < 0, C(AX, 1) > 0. 

Finally, we investigate the character of the convergence of Ga(X, t) to 
[P/(t - p)]. From (4.2), 

G0(X, t) - (=P(t< d2 [(P2t))P - (Pt<] [I + e(X t)] 

where e(X, t) -i 0. Hence 

-~~~ Pat) )P 
Gim G(X) 

t) 
M2 - d [(PWt)P - ( t)P] 

A~~r H~2 t - P2 t - P1 

Furthermore we have 
THEOREM. If P1/P2 > 0, the coefficients of 01,(X, t) converge to the coefficients of 

[P(t)/(t - pi)]1, monotonically as X - X, while if P1/P2 < 0 they converge alter- 
natingly. 
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9. Normalized Calculations. We noted in Section 3 that if any of the zeros of P 
have magnitude greater than unity, then the coefficients of G(x, t) increase without 
limit. On the other hand, if all the zeros of P lie within the unit circle, G(X, t) con- 
verges to the zero polynomial. Let h(t) denote the polynomial h(t) divided by its 
leading coefficient. We observed that G(X, t) -> P(t)/(t - P1). Hence G(X, 0) has 
well-behaved coefficients. As we shall see, Gp(X, t) is just as easy to calculate as 
Gr (X, t). 

From 

G(X + 1, t) = tG(X, t) -ao(X)P(t) 

we conclude that 

G(X + 1, t) = tG(X, t) - P(t), if ao (X) 5 0, 

G(( + 1, t) = tG(X, t), if xo (X) = 0. 

If B = 1, start with G(n - 1, t, 1) = - P(t). Let 
n-i 

(9.2) G(X, t) = yj(x)t 
i=0 

Then 

(9.3) 'yj(X + 1) -=y3+a(X) -.a.. j =1,2,**,n-1, I n(X)= 0. 
70() - =ai21 

n 

On a machine with slow division, [-yi(X)- a]-' should be formed first. Since 

7yi(X)-al = a, 
(X+ 

1) 

the denominator of (9.3) cannot vanish for X sufficiently large and finite. 
Since the leading coefficient of GQ(X, t) is O(X) for p = 1, 2, - , it follows from 

(4.7 ) that 
p-1 i(p--k) 

9k=? (p - 1-- k)! Vk(t). 

In terms of the Gp(X, t), the iteration function is simply 

pp (X, t) = t - P(t) G-,(X, t 
(9.5) ~ ~ ~ 0 = ~~~(x t) 

In particular, 

(9.6) (i (XI t) = t - Pa )X 

(9.7) 2(x, t) = t - P(t) G(X -t) 

10. Two Algorithms for the Accelerated Calculation of the G Polynomials. 
The calculation of G(2X, t) from G(X, t) using the recursion 

(10.1) G(X + 1, t) = tG(X, t) - ao(X)P(t) 
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requires about Xn multiplications. In this section we give two algorithms for cal- 
culating G(2X, t) from G(X, t) in a number of multiplications which is proportional 
to n2. In Algorithm I, G(X + 1, t), ., G(X + n-1, t) are formed as intermediate 
quantities while in Algorithm II we proceed from G(X, t) to G(2X, t) without form- 
ing any intermediate G(X + j, t). In both algorithms the vector of coefficients of 
G(2X, t) is given by a matrix-vector multiplication. 

We must emphasize that the results of this section hold only for B(t) = 1. Hence 
n X 

W = Q(X) = E Pi 
i=1 P (pi) 

Furthermore the normalization of Section 9 cannot be applied here. 
We first prove a number of identities which are more general than required for 

the algorithms. We have for 1 = 0, 1, 
n-1 

(10.2) G (2X + 1, t) = a, a(X + 1)G(X + n - 1- j t)) 
j=o 
n-1 

(10.3) G(2X + 1, t) = Za3(X)G(X + 1 + n-1 -j, t), 
j=O 

where aj(X) is defined by 
n-1 

(10.4) G(X, t) = Zaj(X)tnil. 
j=o 

To prove (10.2) we define 
n-1 

h(X, t) = Z a1(X + 1)G(X + n- 1 -j, t). 
j=o 

Then 
n-1 

h(X, pi) = E at (X + 1) pi X+n 
j=O 

= PixG(X + 1, Pi) = Pi2X~t 

Since h(X, t) is a polynomial of degree at most n - 1 and since 

h (X, Pi) = Pi 2a,+1 = G(2X + 1, pi)) i = 1) 2, ...* n, 

we conclude h(X, t) G(2X + 1, t). This proves (10.2) and the proof of (10.3) may 
be handled similarly. 

Define Cj(X) by 
2n-2 

(10.5) G2(X, t) = E Cj(Z)e n-2-j 
j=0 

Then one may easily show that for 1 = 0, 1, **, 
2n-2 

(10.6) G(2X + 21, t) = Z Cj(X + 1)G(2n -2 -j, t). 

Algorithm I is based on (10.2) or (10.3) with 1 = 0, that is, 
n-1 

(10.7) G(2X, t) = af(X)G(X + n- 1 -j, t) 
j=0 
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while Algorithm II is based on (10.6) with 1 = 0, that is, 
2n-2 

(10.8) G(2X, t) = Ei Cj(X)G(2n - 2 - j, t). 
j=o 

We first describe Algorithm I. It follows from (10.4) and (10.7) upon com- 
parison of powers of t that 

n-1 

(10.9) aj(2X) = Zak(X)aj(X + n-1-k), j=O1, ... ,n-1. 
k=O 

Let A (X) be the matrix whose columns are the coefficients of G(X + k, t), k = 

0,1, ,n- 1.Thatis, 

ao(X) ao(X + 1) *- ao(X + n-1) 

A(X) ( ai(X) a1(X + 1) ... ai(X + n-i1) 

\an-i(X) an-A(X + 1) ... an-1 (X + n - 1) 

Let N (X) be the first column of A (X) and let M (X) be the first column in inverted 
order. Then 

(10.10) N(2X) = A(X)M(X). 

Observe that N (2X) is just the vector of coefficients of G (2X, t) and is also the first 
column of A(2X). From 

G(X + k, t) = tG(X + k - 1, t) - ao(X + k - 1)P(t), 

it follows that 

aj-l(X + k) = aj(X + k - 1) - ajao(X + k - 1), 
(10.11) k = 1,2, ,n - 1 j = 1,2, ,n, atn(X +k 1) = O. 

This permits the computation of the remaining columns of the new A matrix from 
the first column. 

To start the computation, we note that G(n, t, 1) = tn P, or 

(10.12) a,(n) = -aj+,, j = 0,1, * , n-1. 

Algorithm I may be summarized as follows. Initially compute the first column of 
A (n) by (10.12). After this initialization the remaining columns of A are computed 
by (10.11) while the next first column is computed by (10.12). After r steps 
G(27n, t) has been computed. 

It is easy to see that the computation of G(2X, t) from G(X, t) by Algorithm I 
requires about 2n2 multiplications as contrasted with the Xn multiplications re- 
quired if recursion (10.1) is used. Hence if X > 2n, it is cheaper to use Algorithm I. 
On the other hand, extra routines and memory are required. 

We turn to Algorithm II which is based on (10.8). Since 

G(j,t,1) = t1, j = 0,1, n -1, 
we have 

n-2 

(10.13) aj(2X) = Cn-1+j(X) + E ai(n + k)C.-2-k(X), j = 0, 1, ... * n - 1. 
k=O 
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Let B be the matrix whose columns are the coefficients of G(n + k, t), 
k = 0,1, ,n- 2. That is, B is just A(n) without its last column. Let N(X) be 
defined as before and let 

/Cn-2(X)\ /Cn-A(X) 
L(X) = . 1 K(X) = [ * 

Co(X) / C2n-2(X) 

Then 

(10.14) N(2X) = K(X) + BL(X). 

Observe that B is independent of X and need be formed just once for any problem. 
Algorithm II may be summarized as follows. Compute the first column of B 

by (10.12) and the remaining columns by (10.11) with X = n. Square G(n, t) = 
tn- P(t) and use the coefficients to calculate G(2n, t) by (10.13). Square this 
polynomial (which is again of degree n - 1) and use the coefficients to calculate 
G(4n, t), etc. 

It is easy to see that the computation of G(2X, t) from G(X, t) by Algorithm II 
requires about 2 n2 multiplications per step, where multiplications by the number 2 
have been neglected. The calculation of B requires about n2 multiplications but 
this need be done only once. Thus Algorithm II requires fewer multiplications 
than Algorithm I but requires a polynomial squaring routine. 

11. Iteration Functions for Small Values of X. By the Theorem of Section 7 
we know that for X sufficiently large and fixed the iteration functions we have 
studied generate sequences which are guaranteed to converge. These iteration 
functions are not given by explicit formulas depending on P and its derivatives. In 
this section we confine ourselves to values of X ? n, and B = 1. These iteration 
functions are given by explicit formulas. Naturally these methods will not be 
globally convergent. 

The case X = 0, which leads to standard methods for solving polynomial and 
transcendental equations, is considered in Section 12. We turn to the case X = 

0 < < n - 1. Since G(-q, t, 1) = t0,we have 

(11.1) p2(7, t, 1) = t (P(t) 
WP'(t - 77P t) 

(11.2) p3(, t, 1) = t - tP(t)[tP'(t) - 
n-l 

T(t) =[pl(t)]2- 
_ p(t)pff(t)) Xq > 1. 

We would usually take the largest permissible value of aq, namely -q = n -1. 
We consider the case X = n. Then G(n, t, 1) = tP - P(t) and we have 

(11.3) 9,2(n, t, 1) = t -tn-TP(t) -nP(t)] 

Observe the similarity among (11.1), (11.3) and the Newton-Raphson func- 
tion p = t - P(t)/P'(t). Although (11.1) and (11.3) require very little extra 
computation, they arc distinctly superior. This may be seen from the asymptotic 
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error constant 
n di m 

Cp(, B) = i=2 (P1 -Pi) 

Then for the Newton-Raphson function 

C2(0, 1) = -EP(pi) 1 
~i= P'(Pi) Pi - P 

while for (11.1), 

C2Qi,1) = jP'(Pi) ,A 
i=1 P(pi) P1 -pi 

and for (11.3), 

C2 (n, 1) = pP'(i) pi-p j=1 P(p)P- 

12. Relation to Other Methods. The iteration functions that we have been 
studying are of the form 

fp(Xt, B) = Gv(X 1, tB) Gv-1 (X, t, B) 
Gj,(X, t, B) Gl,(X, t, B) 

(12.1) Zcnp +?/(t- )P 

_ i-l _~~~~C B (pi) 

ci 
X/(t- 

)P 

c 

P'(pP) 

By assigning certain values to' X, p, t we obtain many classical methods for solving 
equations as special cases of (12.1). 

We consider first the case B = 1, X = 0. From (4.7), 

(12.2) (P(0, t, 1) = t + (p - P1) /P)() 

This is an often-rediscovered sequence of iteration functions. In particular, with 
u = P/P', Ai = P(-)Ii!P', 

(P2(0, t, 1) =t -u 

(O3(0, t, 1) = t 1 A2u 

(P4(0, , 1 ) = t u(1 - A2 U) 
1 2A2 U?+A3U2' 

From (4.19) it follows that 

P P ... 0 I 
P' P 

* 
0 

( 12.3 ) Gp(0, t, 1 ) = .. ... . 
p('VD p(p-2) 

Pp-1) (p... 0 
(p -i)! (p -2)! 
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This permits pp(O, t, 1) = t - P(t)G,-,(O, t, 1)/G(0, t, 1) to be expressed in terms 
of determinants. 

Some insight into these iteration functions can be achieved by observing that 
n 

p//P((pi)(t - p)P 
S(0 t, 1) = i-1 

, l/P'(pi)(t- p- 

If t is sufficiently close to P1, then all but the first term in the numerator and de- 
nominator may be ignored and we have fp,(, t, 1) -- pi . Although these processes 
are of pth order, they are guaranteed to converge to pi only for t sufficiently close 
to Pi . The advantage of sp,(X, t) is that for X sufficiently large, op, (X, t) pi for t 
arbitrary. 

Next, we observe that 

(12.4) VP ) = 5W _ 6i) 
Z Ci p 

ill 

with 

a(X) = 3(X + 1)/$(X). 

Then 6(X) is just the Xth approximant to pi in the method of Bernoulli. That is, 
if we generate a sequence y(X) by 

P(E)y(X) = 0, y( W) = = 0,1, , n-1, 

then y(X) 5(X) for some choice of Yo .. Yn-i . Hence Bernoulli's method 
is equivalent to calculating sp,(X, co) for increasing X and this is a first order process 
for calculating Pi 

Observe that 

(12.5) fP(0A 0) = 6(-p). 

If 

|Pn I < I Pn-i =a i-1 2, ** n -1 
then 

lim p,(0,0) = pn. 

Observe that [lpp+,(0, 0)]7' is the pth Bernoulli iterant to p,7'. 
From (12.1) and (12.3) 

Vp(0 0, 1) = -an y-,(0, 0, 1) 
GP(01 oil) 

(12.6) an-1 a. ... 0 

Gp(0, 0, 1) = an-2 an-l 
... 0 

an+1-P an+2-p ... an-, 
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where a-k 0= 0. k > 0. Hence sp,(O, 0, 1) gives an approximation to the smallest 
zero as the ratio of two determinants. This approximation appears due to Furstenau 
[10], [11]. Whittaker [29] rewrites (12.6) as a series. 

We propose to calculate the sequence of polynomials G(X, t) by 

G(X + 1, t, B) = tG(X, t, B) - ao(X)P(t), G(0, t, B) = B(t). 

However, the G(X, t) could also be calculated by the recursion P(E)G(X, t) = 0. 
Indeed it is easy to prove that for G(0, t) arbitrary there exist unique polynomials 
yo(t), yi(t), , yn,(t) of degree at most n - 1 such that if 

P(E)y(X, t) = 0, y(A, t) = y(t), A = 0,1, n 1, 

then 

Y(X, t) -G(XI t), X = 0, 1, 2, 

Hence the G(X, t), which play such a vital part in our work, mnay be thought of as 
a Bernoulli sequence whose initial terms depend on t. 

For certain special choices of B(t), we can easily calculate the corresponding 
y,(t). If B = 1, then yg(t) = t'. If B(t) = P'(t), then 

n-1 

yA(t) Z An-l-k(ts( + k), 
k=O 

where s(r) is the Newton sum s(r) = Z=1 pX- 
We indicate some of the important papers concerning the solution of polynomial 

equations which are related to our material. It is remarkable considering the variety 
of motivating ideas for methods of solving polynomial equations that so many may 
be formulated in terms of the power series expansion of ratios of polynomials. 
(M/iany of the papers concern themselves with the calculation of the zeros of analytic 
functions rather than polynomials.) The theorem underlying these methods, which 
is due to Konig [14], concerns the coefficients of a function which has just one simple 
pole on its circle of convergence. 

In the method of Bernoulli (D. Bernoulli [5], Euler [8], Lagrange [17]) these 
coefficients are calculated by a recurrence relation. Simpson [23] describes what 
amounts to Bernoulli's method and anticipates some of the later work. Furstenau 
[10], [11] expresses the coefficients as the ratios of determinants and Whittaker 
[29] expresses them as a series. See also Meyer [18], Runge [20], and Cohn [6]. 

Related to these methods are those which use the coefficients to derive iteration 
functions. Much of the basic work in this area is due to Schr6der [21]. This line of 
inquiry has been continued by Hamilton [12], Zajta [30], and Kulik [15], [16], among 
others. 

Overall views may be obtained in Householder [13, Chapter 3] and Munro 
[19]. A perceptive paper by Fry [9] is also recommended. 

Sebastiao e Silva [22] uses the remainder of the division of tX by P to obtain a 
factorization of P and he states what we have called Algorithm II, without proof. 
His work has been continued by Aparo [1], [2]. In an interesting series of papers, 
Bauer [3], [4] obtains related results from a different point of view. Sebastiao e 
Silva, Aparo, and Bauer do not construct iteration functions. 

There is an extensive literature (Jacobi, Furstenau, Hadamnard, Aitken, Se- 
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bastiAo e Silva, Rutishauser, Bauer) on the calculation of equimnodular and sub- 
donmiinatit zeros whi(h we do not review here. 

APPENDIX A. NUMERICAL EXANIPLES 

The approxiniation of zeros by the methods of this paper is a two step process. 
First an iteration function is formed and then a sequence of approximants is calcu- 
lated. The iteration function is easily constructed on a computer. All that is re- 
quired are a few subroutines for performing simple manipulations of polynomials 
such as differentiation, addition, and multiplication. The programming may be 
done in any of a number of convenient procedure oriented languages. The examples 
reported here were obtained from a program written in FORTRAN. 

The only choices of B(t) which have been tried are B(t) = 1 and B(t) = P'. 
The appropriate choice of X depends on the ratio of the magnitude of the largest 
subdominaant zeros to the dominant zero. In the followi'ig numerical examples X was 
chosen as a fairly small integral multiple of n. 

Exautple 1. 

9(t) = t' - W5/ + Illt - 6) Pi 3) P2 =2, P3 =1 

Use 

G (24 t, 1) 

Then 

G(24, t, 1) =- t- - 2.99988117950632t + 1.99988117951340. 

Take to = 100,000. Thern 

11 = 3.00012 

2, = 3.000000014 

t:,= 3.0000000000017. 

]'Xamu ple 2. Samie p)olynioimial as above. Use 

(poj 24, t, P) =- t 1P' ) 

4'lhen 

G(24, t,1") - :3.00005939967062t + 2.0000.59:39967770. 

Let to 100,000. Therl 

tj = 2.999941 

t, = 3.000000003,5 

t1 = 2.99999999999979. 
E]xamiiple :3. 

Ptt) = t - 461' + .528t - 1090t + 2175, 

P1 = 29, P2 = 15, P:34 = 1 + 2i. 
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Use 

(P2(16, t, 1) = t - P(t) 6(16, t, 1) 
GT2(16, t, 1) 

Then 

G(16, t, 1) = t3 - 17.0003674589376t2 + 35.0007349178752t 

- 75.0018372946880, 

G2(16, t, 1) = t6 - 34.0007349178752t5 + 359.019107864755t4 

- 1340.07496162327t3 + 3775.24105306307t2 

- 5250.34173681196t + 5625.40420483136. 

Take to = 100,000. Then 

t= 28.99963 

t2= 28.9999999999997. 

Example 4. 
8 

P(t) = II (t -i) = t8 - 36t7 + 546t6 - 4536t5 + 22449t4 - 67284t3 

+ 118124t2 -109584t + 40320. 

Use 

(Pi(32, t, 1) = t -_ P(t) 

Then 

G(32, t, 1) = t7 - 27.8967511565157t6 + 319.836370519674t5 

- 1942.00032787128t4 + 6693.50209993064t3 - 12965.3556514612t2 

+ 12887.1250096890t - 4966.21074965027. 

Let to = 100. Then 

ti = 8.10 

t2 = 8.0089 

t3 = 8.00084 

t4= 8.000081 

t5= 8.0000077 

t6= 8.00000073 

t7= 8.000000070 

t8= 8.0000000067 
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tg - 8.00000000064 

tio = 8.000000000061. 

Example 5. 

P(t) t3 - 5.01t2 + 8.03t - 4.02, P1 2.01, P2 2, P3 1. 

Use 

(P2(48) t, F') =t - P(t) G0(48, t,') 

G2(48, t, P') 

Then 

G(48, t, P') = t2 _ 3.00440433725533t + 2.00440433725533 

G2(48, t, P') = t4 - 6.00880867451066t3 + 13.0357787414152t2 

- 12.0441314592984t + 4.01766139239389. 

Let to = 100,000. Then 

ti = 2.0056 

t2= 2.0067 

t3= 2.0084 

t4= 2.0097 

t5= 2.0099940 

t6= 2.0099999972 

t7= 2.00999999999993. 

APPENDIX B. SUMMARY OF FORMULAS FOR THE CONSTRUCTION OF 

ITERATION FUNCTIONS 

For the convenience of the reader who is primarily interested in using the new 
iteration functions, we summarize the important formulas. 

1. Unnormalized Calculation (Sections 3, 4, 5). Let the degree of B(t) be less 
than or equal to n - 1 with B (pi) X 0. Let 

G(0, t, B) = B(t), G(X + 1, t, B) = tG(X, t, B) - ao(X)P(t), 

where ao(X) is the leading coefficient of G(X, t, B). Let 

p-1-k 1 (p-1-k)(X t) B) 
Gp(X t B) = [-P(t))P-'-k pV (t1 

where 

Vo(t) = 1, Vk(t) = P'(t)Vk-l(t) - P Vt) 
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Let 

Pp(x, t, B) = t - P(t) Gp-1(X, t, B) 
Gv(X, t, B) 

In particular, 

01(x, t) t - P(t) G(X) ' 

G(X, t) 

(P2(X, t) t - P(t) P't)(X X) -Pt)G(,t 

(p3(X, t) = t - P(t) [P'(t)G(X- t) - P(t)G'(X, t) 
T(t)G(X, t) - P(t)P'(t)G'(X, t) + 2P2(t)G/' (X, t) 

T(t) = [P'(t)12 - jP(t)P"(t). 

2. Normalized Calculation (Section 9). Let h(t) denote the polynomial h(t) 
divided by its leading coefficient. Then 

G(X + 1, t) = tG(X, t) - P(t), if ao(X) # 0. 

6(X + 1, t) = tG(o, t) if ao(X) 0. 
p-i-k ^(p-1l-k) (X t 

6Z(X, t) = Z [-P(t)]P ( - 1 Vk(t) 

ss(XI t) = t - P(t) G,, (X, t) 
Gv (X, t) 

3. Accelerated Calculation of G(X, t, 1) (Section 10). 
ALGORITHM 1. 

a (n) = -aj+l, j = 0,1, , n-1, 

abj-l(X + k) =aj(-X + k - 1 )- a o(X + k -1), k = 1, 2, * , I-1 

j=1, 2, ,n, a,(X + k 1) =0, 
n-1 

aj(2A) = ak(X)aj(X + n-1--k), j=O, 1, **,n-. 
k;=O 

ALGORITHM Il. 

a,(n) = - aj+l , j = 0, 1, * , n-1, 

aoj-(n + k) = ao((n + k-1) - aiao(n + k - 1), k = 1, 2, , n -2, 

j = 1, 2, n, a(n + k-1) = 0, 
n-2 

a,(2X) = C?-l+j (X) + E aj(n + k)Cn-2-k(X), j = 0, 1, , n - 1, 
k=O 

where 
2n-2 

G2(X, 1) = E Cj(>3 )t2-2- 
j=O 
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4. Iteration Functions for Small Values of X (Section 11). 

sn2(4-l XtX1 )-t-P'(t) - (n -l )P(t)' MVnp(t)j 

p(Mn, t, 1) = t - Pt[t- 
tn-l [tP' (t) -nP(t)] 

APPENDIX C. NOTATION 
n ~~~n 

1. P(t) Zant-jtjr (t - pi), pi > pj |, j = 2, 3, ,n. 
j=0 j=o 

2 B(t)t = G(X, t, B) + QN t B) 
2.P(t) - PWt (,t ) 

3. Li(t) P=(t) t - pi P'(pi) 

4. Eh(X) = h(X + 1). 

5. 3(X) - B(p) (pi) E() = Z Pi 

n-i n-1- 
6. G (x) t) - a fj(X)t8-- 

j=o 
k 

7. Ak(t) = ZakJt . 
j-o 

8. h(t): The polynomial h(t) divided by its leading coefficient. 

9. ci = B(pi)/P'(pi). 

10. G.(XA t, B) = (-l) P P ' (t) [u(x (0tB) , G Go (X). 

( p-!k Pk+(t) L P 

12. (pp(X, t, B) = Gp(X + 1, t, B) 

13. u(t) = P(t)/P'(t) 

14. If 

.rn (pr(X, t, B) - pi = Cr(= B), 
t-p 1 (t Pi) ,B 

then r is the order and Cr(X, B) is the asymptotic error constant. 

15. di = cl/ci, Ai = Pi/Pi. 
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